= Python OCC = ---- == Struktura programa v Python OCC == Rabimo uvoziti uporabniški vmesnik, ki nam omogoči preprosto manipulacijo predstavljenega objekta (glava dokumenta): {{{ #!python from OCC.Display.SimpleGui import * }}} Z ukazno vrstico uvozimo v program knjižnico, ki vsebuje modelno okno ter preprosti uporabniški vmesnik, ki ga lahko uporabimo za prikaz različnih geometrijskih oblik v 3D okolju. [[BR]][[BR]] Uvedba funkcij za iniciacijo prikaza: {{{ #!python display, start_display, add_menu, add_function_to_menu = init_display() }}} Z ukazno vrstico uvedemo v program prikaz v modelnem oknu ter možnost uporabe preprostega menija. [[BR]][[BR]] Iniciacija prikaznega okna: {{{ #!python start_display() }}} S tem ukazom iniciramo modelno okno. Definicija uporabljenih geometrijskih oblik mora biti podana preden se ukaz izvede.[[Image(display.png, right)]] [[BR]][[BR]][[BR]][[BR]] Uporaba miške v uporabniškem vmesniku: * Rotacija objekta: levi gumb na miški * Translacija objekta: srednji gumb na miški * Povečava objekta: desni gumb na miški, premik levo-desno [[BR]] Uporaba tipkovnice v uporabniškem vmesniku: * Tipka'w'- prikaz žičnega modela * Tipka 'e'- prikaz vidnih robov * Tipka 's'- prikaz volumskega modela * Tipka 'f'- prikaz celega objekta v prikaznem oknu * Tipka 'q'- prikaz vidnih robov [[BR]][[BR]][[BR]][[BR]][[BR]] Za izdelavo modela v okolju Python OCC je potrebna predhodna uvedba knjižnic OpenCascade (OCC), ki vsebujejo različne nabore ukazov: {{{ #!python from OCC.Display.SimpleGui import * # Knjižnica z modelnim oknom ter uporabniškim vmesnikom (GUI) from OCC.gp import * # Knjižnica z naborom osnovnih gradnikov -točk from OCC.GC import * # from OCC.TopoDS import * # Knjižnica z naborom topoloških gradnikov (krivulje,...) from OCC.BRepBuilderAPI import * # Knjižnica z naborom osnovnih gradnikov skice (vozlišča, robovi, segmenti, mreže ...) from OCC.BRepPrimAPI import * # Knjižnica z naborom osnovnih geometrijskih primitivov from OCC.BRepFilletAPI import * # Knjižnica z naborom orodij za izdelavo zaokrožitev }}} V program uvedemo zgolj knjižnice, ki jih tudi rabimo za učinkovito delovanje. [[BR]][[BR]][[BR]] ---- == Preprosti program- Primer izdelave izvleka v prostor (Extrude) == Primer izdelave kocke z dimenzijami 10x10x10. Postopek modeliranja v [[Image(Kocka.png, right)]] komercialnih modelirnikih (SolidWorks, Catia, NX, ProEngineer, Inventor,...) je sledeči: * izbira ravnine, na katero se nariše skica[[BR]][[BR]] * izris oblike skice (kvadrat)[[BR]][[BR]] * definiranje skice (dimenzije, geometrijske relacije, pozicija v prostoru)[[BR]][[BR]] * izbira ustrezne značilke za izdelavo 3D objekta (Izvlek- Extrude)[[BR]][[BR]] * določitev parametrov izvleka (smer, dolžina izvleka)[[BR]][[BR]] * model je zmodeliran [[BR]][[BR]][[BR]][[BR]][[BR]][[BR]][[BR]] V okolju Python OCC poteka izris objekta nekoliko drugače. Razložen je preprosti postopek izdelave kocke, ki poteka v večih korakih. Pri izdelavi je potrebno manualno določiti vse parametre, ki jih komercialni modelirnik običajno določi namesto nas.[[BR]][[BR]] Korak 01: Izdelava točke v prostoru [[Image(Vozlisca.png, right)]] Razlaga ukaza za izdelavo točke [http://opencascade.sourcearchive.com/documentation/6.3.0.dfsg.1/classgp__Pnt.html gp__Pnt] {{{ #!python Tocka = gp_Pnt(x_1 , y_1 , z_1) }}} Iz določenih točk lahko naredimo vozlišča. Detajlna razlaga uporabljenega ukaza: [http://opencascade.sourcearchive.com/documentation/6.3.0.dfsg.1/classBRepLib__MakeVertex.html BRepBuilderAPI__MakeVertex]. {{{ #!python Vozlisce = BRepBuilderAPI_MakeVertex(Tocka) }}} Če hočemo prikazati vozlišča v modelnem oknu, potem je potrebno napisati ukaz za prikaz oblike: {{{ #!python display.DisplayShape(Vozlisce.Shape()) }}} [[BR]][[BR]][[BR]][[BR]][[BR]][[BR]] Korak 02: Izdelava robov iz točk [[Image(Robovi.png, right)]] {{{ #!python Rob = BRepBuilderAPI_MakeEdge(Zacetna_tocka, Koncna_tocka) }}} Za izdelavo roba rabimo dva podatka, to je začetna točka ter končna točka robu. Detajlna razlaga uporabljenega ukaza: [http://opencascade.sourcearchive.com/documentation/6.3.0.dfsg.1/classBRepLib__MakeEdge.html BRepBuilderAPI__MakeEdge]. Če hočemo prikazati izdelani rob v modelnem oknu, je potrebno zapisati ukaz: {{{ #!python display.DisplayShape(Rob.Shape()) }}} [[BR]][[BR]][[BR]][[BR]][[BR]][[BR]][[BR]][[BR]][[BR]] Korak 03: Izdelava mrežnega modela iz točk [[Image(Wire.png, right)]] {{{ #!python Mreza = BRepBuilderAPI_MakeWire(Rob1.Edge() , Rob2.Edge() ,Rob3.Edge(), Rob4.Edge()) Mreza2 = BRepBuilderAPI_MakeWire(Mreza.Wire(), Rob1.Edge()) }}} Vsak rob predstavlja svojo geometrijsko obliko v prostoru. Zato moramo, preden naredimo površino te robove združiti v eno samo geometrijo. Pozorni moramo biti, da robovi tvorijo zaprto obliko. Ukaz nam dovoli sočasno uporabo štirih argumentov- robov. Pri tem moramo označiti, da gre za obliko roba [Rob.Edge()]. Kot rezultat dobimo združeno mrežo. Detajlna razlaga uporabljenega ukaza: [http://opencascade.sourcearchive.com/documentation/6.3.0.dfsg.1/classBRepBuilderAPI__MakeWire.html BRepBuilderAPI__MakeWire] Če hočemo prikazati izdelani rob v modelnem oknu, je potrebno zapisati ukaz: {{{ #!python display.DisplayShape(Mreza.Shape()) }}} [[BR]][[BR]][[BR]][[BR]][[BR]][[BR]][[BR]] Korak 04: Izdelava površine iz obstoječe mreže [[Image(Povrsina.png, right)]] {{{ #!python Povrsina = BRepBuilderAPI_MakeFace(Mreza.Wire()) }}} Iz obstoječega zaprtega lika, ki je planaren lahko tvorimo površino. Detajlna razlaga uporabljenega ukaza: [http://opencascade.sourcearchive.com/documentation/6.3.0.dfsg.1/classBRepBuilderAPI__MakeFace.html BRepBuilderAPI__MakeFace] Če hočemo prikazati izdelani rob v modelnem oknu, je potrebno zapisati ukaz: {{{ #!python display.DisplayShape(Povrsina.Shape()) }}} [[BR]][[BR]][[BR]][[BR]][[BR]][[BR]][[BR]][[BR]][[BR]][[BR]] Korak 05: Izdelava izvleka v prostor [[Image(Solid.png, right)]] Izdelano površino lahko uporabimo za izdelavo tridimenzionalne oblike. Če hočemo narediti izvlek, je potrebno najprej določiti še parametre vičine izvleka. V ta namen določimo vektor, ki vsebuje podatek o velikosti in smeri izvleka. Razlaga uporabljenega ukaza: [http://opencascade.sourcearchive.com/documentation/6.3.0.dfsg.1/classgp__Vec.html gp_Vec]. {{{ #!python Vektor = gp_Vec(Velikost_X , Velikost_Y, Velikost_Z) }}} Sledi uporaba ukaza za izdelavo izvleka. Pri tem je potrebno uporabiti podatek o površini ter izdelani vektor. Če hočemo, lahko naredimo tudi neskončno dolgi izvlek v prostor, tako da uporabimo zgolj podatek o izbrani smeri namesto določenega vektorja (uporaba pri Boolovi operaciji odštevanja). Razlaga uporabljenega ukaza: [http://opencascade.sourcearchive.com/documentation/6.3.0.dfsg.1/classBRepFeat__MakePrism.html BRepFeat__MakePrism]. {{{ #!python Izvlek = BRepPrimAPI_MakePrism(Povrsina.Face() , Vektor) Izvlek = BRepPrimAPI_MakePrism(Povrsina.Face() , Smer) }}} [[BR]][[BR]][[BR]][[BR]][[BR]] Barvo modela lhako po želji spremenimo z uporabo ukaza: {{{ #!python display.DisplayColoredShape(Oblika.Shape(), 'BARVA') }}} [[BR]][[BR]] Primer programa za izdelavo izvleka:[[Image(Solid-barve.png, right)]] {{{ #!python ## Izdelava Izvleka from OCC.Display.SimpleGui import * from OCC.BRepPrimAPI import * from OCC.gp import * from OCC.GC import * from OCC.BRepBuilderAPI import * display, start_display, add_menu, add_function_to_menu = init_display() #Izdelava točk v prostoru T1 = gp_Pnt(0 , 0 , 0) T2 = gp_Pnt(10 , 0, 0) T3 = gp_Pnt(10 , 10 , 0) T4 = gp_Pnt(0, 10 , 0) #izdelava robov na podlagi definiranih tock E1 = BRepBuilderAPI_MakeEdge(T1, T2) E2 = BRepBuilderAPI_MakeEdge(T2, T3) E3 = BRepBuilderAPI_MakeEdge(T3, T4) E4 = BRepBuilderAPI_MakeEdge(T4, T1) #izdelava mreznega modela Mreza = BRepBuilderAPI_MakeWire(E1.Edge() , E2.Edge() ,E3.Edge(), E4.Edge()) #Izdelava povrsine Povrsina = BRepBuilderAPI_MakeFace(Mreza.Wire()) #Izdelava vektorja za izvlek v prostor Vektor1 = gp_Vec(0 , 0, 10) #Izdelava priznaticnega telesa- izvlek povrsine v smeri vektorja Izvlek = BRepPrimAPI_MakePrism(Povrsina.Face() , Vektor1) #Prikaz izvleka v prikaznem oknu display.DisplayShape(Izvlek.Shape()) #Sprememba barve modela display.DisplayColoredShape(Izvlek.Shape(), 'RED') display.View_Iso() #izometricni prikaz start_display() }}} [[BR]][[BR]][[BR]][[BR]] ---- == Uporaba geometrijskih primitivov == [[BR]][[BR]] Izdelava kvadra {{{ #!python kvader = BRepPrimAPI_MakeBox(dolzina_X, dolzina_Y, dolzina_Z) kvader = BRepPrimAPI_MakeBox(Tocka1, dolzina_X, dolzina_Y, dolzina_Z) kvader = BRepPrimAPI_MakeBox(Tocka1, Tocka2) }}} [[BR]][[BR]][[BR]][[BR]] Izdelava izvleka pod kotom nagiba {{{ #!python kvader= BRepPrimAPI_MakeWedge(dolzina_X, dolzina_Y, dolzina_Z, dolzina_X2) kvader= BRepPrimAPI_MakeWedge(dolzina_X, dolzina_Y, dolzina_Z, dolzina_Xmin, dolzina_Zmin, dolzina_Xmax, dolzina_Zmax) kvader= BRepPrimAPI_MakeWedge(dolzina_X, dolzina_Y, dolzina_Z, dolzina_X/2, 0, dolzina_X/2, dolzina_Z) kvader= BRepPrimAPI_MakeWedge(dolzina_X, dolzina_Y, dolzina_Z, dolzina_X/2, dolzina_Z/2, dolzina_X/2, dolzina_Z/2) }}} [[BR]][[BR]][[BR]][[BR]] Izdelava valja {{{ #!python valj= BRepPrimAPI_MakeCylinder(Radij, Visina, Kot_radiani) valj= BRepPrimAPI_MakeCylinder(Os, Radij, Visina, Kot_radiani) }}} [[BR]][[BR]][[BR]][[BR]] Izdelava stožca {{{ #!python stozec= BRepPrimAPI_MakeCone(Radij_1, Radij_2, Visina, Kot_radiani) stozec= BRepPrimAPI_MakeCone(Os, Radij_1, Radij_2, Visina, Kot_radiani) }}} [[BR]][[BR]][[BR]][[BR]] Izdelava sfere {{{ #!python sphere= BRepPrimAPI_MakeSphere(Radij, Kot_radiani) sphere= BRepPrimAPI_MakeSphere(Radij, Kot_a1_rad, Kot_a2_rad) }}} [[BR]][[BR]][[BR]][[BR]] Izdelava torusa {{{ #!python torus= BRepPrimAPI_MakeTorus(Radij_torusa, Radij_prereza) torus= BRepPrimAPI_MakeTorus(Radij_torusa, Radij_prereza, Kot_radiani) torus= BRepPrimAPI_MakeTorus(Radij_torusa, Radij_prereza, Kot_a1_rad, Kot_a2_rad) }}} [[BR]][[BR]][[BR]][[BR]] Izdelava izvleka {{{ #!python Izvlek = BRepPrimAPI_MakePrism(Povrsina.Face() , Vektor) Izvlek = BRepPrimAPI_MakePrism(Povrsina.Face() , Smer) }}} [[BR]][[BR]][[BR]][[BR]] Izdelava krožnega izvleka {{{ #!python Vrtenina = BRepPrimAPI_MakeRevol(Povrsina.Face() , Os) Vrtenina = BRepPrimAPI_MakeRevol(Povrsina.Face() , Os, Kot_radiani) }}} [[BR]][[BR]][[BR]][[BR]] ---- == Uporaba menijev znotraj prikaznega okna == [[BR]][[BR]] Najprej je potrebno definirati funkcije, ki izvršijo ukaz (izdelajo neko obliko). Pri tem pred izrisom oblike počistimo modelno okno obstoječih oblik z ukazom [display.EraseAll()]. {{{ #!python def Funkcija(event=None): display.EraseAll() #definicija prikazane oblike display.DisplayShape(Oblika.Shape()) }}} [[BR]][[BR]] Izdelava menija {{{ #!python add_menu('Ime_menija') add_function_to_menu('Ime_menija',Funkcija1) add_function_to_menu('Ime_menija',Funkcija2) }}} [[BR]][[BR]][[BR]][[BR]]