wiki:tutorial

Version 33 (modified by leon, 12 years ago) (diff)

FIx offset 1

Visualization with OpenGL hands-on

Tutorial aims to introduce visualization techniques with modern Open Graphics Language (OpenGL) approaches standardized with version 3.x+. OpenGL Shading Language (GLSL) is used for that without tendency to introduce photo-realismas output but rather useful colors for scientific data exploration.

Running this tutorial on Linux desktop one requires at least the OpenGL 2.0 graphics with the GLSL 1.1 and supporting libraries GL, GLU, GLUT, GLEW. This can be verified with the following commands:

$ glxinfo |grep OpenGL.*version
OpenGL version string: 2.1 Mesa 8.0.5
OpenGL shading language version string: 1.20
$ ls /usr/include/GL/{glut.h,glew.h,gl.h,glu.h}
/usr/include/GL/glew.h  /usr/include/GL/glu.h
/usr/include/GL/gl.h    /usr/include/GL/glut.h

Legacy OpenGL

Create the following first.c using your favorite editor.

#include <GL/glut.h>

void display()
{
  glClear(GL_COLOR_BUFFER_BIT);
  glColor3f(1.0, 0.4, 1.0);
  glBegin(GL_LINES);
    glVertex2f(0.1, 0.1);
    glVertex3f(0.8, 0.8, 1.0);
  glEnd();
  glutSwapBuffers();
}

int main(int argc, char *argv[])
{
  glutInit(&argc,argv);
  glutInitDisplayMode(GLUT_DOUBLE);
  glutCreateWindow("first.c GL code");
  glutDisplayFunc(display);
  glutMainLoop();
  return 0;
}

Create Makefile to build your program. Legacy sample

CFLAGS=-Wall
LDFLAGS=-lGL -lGLU -lglut -lGLEW

ALL=first
default: $(ALL)

first : first.o

clean:
      rm -rf *~ *.o $(ALL)

Beware that Makefile is TAB aware. So the last line should contain TAB indentation and not spacing.

Make and run the program with

make
./first

Try the same program in Python

from OpenGL.GLUT import *
from OpenGL.GL import *
import sys

def display():
    glClear(GL_COLOR_BUFFER_BIT)
    glColor3f(1.0, 0.4, 1.0)
    glBegin(GL_LINES)
    glVertex2f(0.1, 0.1)
    glVertex3f(0.8, 0.8, 1.0)
    glEnd()
    glutSwapBuffers()

if __name__ == "__main__":
    glutInit(sys.argv)
    glutInitDisplayMode(GLUT_DOUBLE)
    glutCreateWindow("first.py GL code")
    glutDisplayFunc(display)
    glutMainLoop()

and run it with

python first.py

Exercises #1:

  1. Add RGB color to vertices with glColor3f(0.0, 0.4, 1.0);.
  2. Replace single line drawing in display() with the following snippet
       GLfloat vertices[][2] = {
        { -0.90, -0.90 }, // Triangle 1
        {  0.85, -0.90 },
        { -0.90,  0.85 },
        {  0.90, -0.85 }, // Triangle 2
        {  0.90,  0.90 },
        { -0.85,  0.90 }
       };
    
    and try to draw two wireframe triangles in a loop. Change primitive to GL_LINE_LOOP.
  3. Draw two primitives with GL_TRIANGLES. Exercise #1.5
  4. Add different color to each vertex.
     GLfloat color[][3] = {
      {1, 0, 0}, {0, 1, 0}, {0, 0, 1},
      {1, 1, 0}, {0, 1, 1}, {1, 0, 1}};
    
  5. Replace loop with the following
      glVertexPointer(2, GL_FLOAT, 0, &vertices[0][0]);
      glEnableClientState(GL_VERTEX_ARRAY);
      glDrawArrays(GL_TRIANGLES, 0, 6);
      glDisableClientState(GL_VERTEX_ARRAY);
    
    How can we add color to vertices? See glColorPointer and glEnableClientState.
  6. Change background to glClearColor(0.9,1,1,1.0); and suggest initial window in main()
    glutInitWindowSize(512, 512);
    glutInitWindowPosition((glutGet(GLUT_SCREEN_WIDTH)-512)/2,
                           (glutGet(GLUT_SCREEN_HEIGHT)-512)/2);
    
  7. Add keyboard event to quit the program when pressing ESCape key with keycode 27 by adding callback function
     void keyboard(unsigned char key, int x, int y) 
     {
       if (key == 27) 
              exit(0);
     }
    
    and registering event within main() by glutKeyboardFunc(keyboard);. Some prefer key == 'q', though.

Modern OpenGL

OpenL pipeline We extend previous exercise with example that introduces OpenGL 3.x techniques:

  • OpenGL Shading Language (GLSL 1.2) where simple vertex and fragment shader are required.
  • Vertex Aray Objects (VAOs) and vertex buffers (VBOs) stored in GPU.

Create triangle.c and update Makefile with new target

#include <stdio.h>
#include <stdlib.h>
#include <GL/glew.h>
#include <GL/glut.h>

static const GLchar * vertex_shader[] =
  {"void main()"
   "{"
   "  gl_Position = ftransform();"
   "}"
  };
static const GLchar * fragment_shader[] =
  {"void main()"
   "{"
   " gl_FragColor = vec4(0.4,0.4,0.8,1.0);"
   "}"
  };

void setShaders()
{
  GLuint v, f, p;

  v = glCreateShader(GL_VERTEX_SHADER);
  f = glCreateShader(GL_FRAGMENT_SHADER);
  glShaderSource(v, 1, vertex_shader, NULL);
  glShaderSource(f, 1, fragment_shader, NULL);
  glCompileShader(v);
  glCompileShader(f);
  p = glCreateProgram();
  glAttachShader(p,f);
  glAttachShader(p,v);
  glLinkProgram(p);
  glUseProgram(p);
}


enum VAO_IDs { Triangles, NumVAOs };
enum Buffer_IDs {ArrayBuffer,NumBuffers};
enum Attrib_IDs { vPosition = 0 };
GLuint VAOs[NumVAOs];
GLuint Buffers[NumBuffers];
#define NumVertices  6 

void init(void) 
{
  glGenVertexArrays(NumVAOs, VAOs);
  glBindVertexArray(VAOs[Triangles]);
  GLfloat vertices[NumVertices][2] = {
    { -0.90, -0.90 }, // Triangle 1
    {  0.85, -0.90 },
    { -0.90,  0.85 },
    {  0.90, -0.85 }, // Triangle 2
    {  0.90,  0.90 },
    { -0.85,  0.90 }
  };
  glGenBuffers(NumBuffers, Buffers);
  glBindBuffer( GL_ARRAY_BUFFER, Buffers[ArrayBuffer]);
  glBufferData( GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
  glVertexAttribPointer(vPosition, 2, GL_FLOAT, GL_FALSE, 0, (const void*)0);
  glEnableVertexAttribArray(vPosition);
}


void display(void)
{
  glClear(GL_COLOR_BUFFER_BIT);
  glBindVertexArray(VAOs[Triangles]);
  glDrawArrays(GL_TRIANGLES, 0, NumVertices);
  glutSwapBuffers();
}

int main(int argc, char **argv)
{
  glutInit(&argc, argv);
  glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
  glutCreateWindow("GLSL Intro");
  glutDisplayFunc(display);
  glewInit();
  if (!glewIsSupported("GL_VERSION_2_0"))
   {
     printf("GLSL not supported\n");
     exit(EXIT_FAILURE);
   }
  glClearColor(0.9,1.0,1.0,1.0);
  init();
  setShaders();
  glutMainLoop();
  return 0;
}

First GLSL example

Exercises #2

  1. To be able to continue and not get lost introduce shader compiler logs in case of compilation errors by adding the following code into setShaders() right at after vertex shader compilation:
     GLint compiled;
     glGetShaderiv(v, GL_COMPILE_STATUS, &compiled );
     if ( !compiled ) {
       GLsizei len;
       glGetShaderiv( v, GL_INFO_LOG_LENGTH, &len );
       GLchar* log = malloc(sizeof(GLchar)*(len+1));
       printf("Vertex Shader compilation failed: %s\n", log);
       free(log);
     }
    
    Do not forget to repeat the same thing for fragment shader. Add linker debugging
     GLint linked;
     glGetProgramiv(p, GL_LINK_STATUS, &linked );
     if ( !linked ) {
       GLsizei len;
       glGetProgramiv( p, GL_INFO_LOG_LENGTH, &len );
       GLchar* log = malloc(sizeof(GLchar)*(len+1));
       glGetProgramInfoLog( p, len, &len, log );
       printf("Shader linking failed: %s\n", log);
       free(log);
     }
    
    Create some error to verify if it works. For general (core) OpenGL errors we can use the following glcheck() utility at suspicious places.
    #define glcheck() {GLenum s; if ((s=glGetError()) != GL_NO_ERROR) \
                    fprintf (stderr, "OpenGL Error: %s at line %d\n", \
                             gluErrorString(s),  __LINE__);}
    
  2. Introduce vertex temperature with additional array and buffer at the end off init() Temperature varying field
    GLfloat vertex_temperature[] = {0, 1, 0.2, 0.1, 0.5, 0.9};
    glBindBuffer(GL_ARRAY_BUFFER, Buffers[TempBuffer]);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertex_temperature),
                 vertex_temperature, GL_STATIC_DRAW);
    glVertexAttribPointer(tPosition, 1, GL_FLOAT, GL_FALSE, 0, NULL);
    glEnableVertexAttribArray(tPosition);//toggle this
    
    and adding corresponding IDs to VAOs and buffers. Replace shaders with
    static const GLchar * vertex_shader[] = {
      ""
      "attribute float temperature;" // custom variable along with vertex position
      "varying float  t;" // communicate between the vertex and the fragment shader
      "void main()"
      "{"
      "  t = temperature;"
      "  gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;"
      "}"
    };
    static const GLchar * fragment_shader[] = {
      "vec3 Cool = vec3(0, 0, 1);" // Red
      "vec3 Hot  = vec3(1, 0, 0);" // Blue
      "varying float t;" // Interpolated by fragment
      "void main()"
      "{"
      "  vec3 color = mix(Cool, Hot, t);"  // use the built-in mix() function
      "  gl_FragColor = vec4(color, 1.0);" // append alpha channel
      "}"
    };
    
    What happens if we don't enable temperature vertex array? Confer temperature.c attached if having troubles.
  3. Add additional custom vertex array for the pressure. Change the temperature array to have values in Celsius for water boiling range [0-100]°C. Pressure should be in the range of [0-1] MPa. Scaling to color range [0-1] should be done in shaders. Toggle between them with the keyboard event by using the keys 'p' and 't' that glEnableVertexAttribArray() and glDisableVertexAttribArray() corresponding vertex attribute arrays.

Interactivity

Famous Utah teapot from GLUT

Assemble the following Utah teapot model and attached virtual trackball.h and trackball.c sources from SGI. We use

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <GL/glew.h>
#include <GL/glut.h>
#include "trackball.h"

GLuint p; // program needs to be global!
float lpos[4] = {1, 0.5, 1, 0};
GLfloat m[4][4]; // modelview rotation matrix
float last[4], cur[4]; // rotation tracking quaternions 
int width, height, beginx, beginy;
float p1x, p1y, p2x, p2y;

void display(void) {
  GLuint location = glGetUniformLocation(p, "RotationMatrix");
  build_rotmatrix(m, cur);  
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  glLightfv(GL_LIGHT0, GL_POSITION, lpos);
  if( location >= 0 )
    glUniformMatrix4fv(location, 1, GL_FALSE, &m[0][0]);
  glutSolidTeapot(0.6);
  glutSwapBuffers();
}


void processNormalKeys(unsigned char key, int x, int y) {
        if (key == 27) 
                exit(0);
}

void mouse(int button,int state, int x, int y)   
{
  beginx = x;
  beginy = y;
}

void motion(int x,int y)   
{
  p1x = (2.0*beginx - width)/width;
  p1y = (height - 2.0*beginy)/height;
  p2x = (2.0 * x - width) / width;
  p2y = (height - 2.0 * y) / height;
  trackball(last, p1x, p1y, p2x, p2y);   
  add_quats(last, cur, cur);   
  beginx = x;
  beginy = y;
  glutPostRedisplay();   
}

void reshape (int w, int h)
{
  double l = 1;
  width=w;  height=h;
  glViewport (0, 0, w, h);
  glMatrixMode (GL_PROJECTION);
  glLoadIdentity();
  glOrtho(-l, l, -l, l, -l, l);
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();
}

static const GLchar * vertex_shader[] ={"\
varying vec3 normal, lightDir;\
uniform mat4 RotationMatrix;\
void main()\
{          \
  lightDir=normalize(vec3(gl_LightSource[0].position));\
  normal=normalize(gl_NormalMatrix*gl_Normal);\
  gl_Position = gl_ProjectionMatrix * \
  RotationMatrix*gl_ModelViewMatrix*gl_Vertex;\
}"};

static const GLchar * fragment_shader[] ={"\
/* simple toon fragment shader */\
/* www.lighthouse3d.com        */\
\
varying vec3 normal, lightDir;\
\
void main()\
{\
        float intensity;\
        vec3 n;\
        vec4 color;\
\
        n = normalize(normal);\
        intensity = max(dot(lightDir,n),0.0);\
        if (intensity > 0.98)\
                color = vec4(0.8,0.8,0.8,1.0);\
        else if (intensity > 0.5)\
                color = vec4(0.4,0.4,0.8,1.0);\
        else if (intensity > 0.25)\
                color = vec4(0.2,0.2,0.4,1.0);\
        else\
                color = vec4(0.1,0.1,0.1,1.0);\
        gl_FragColor = color;\
}"};

void setShaders()
{
  GLuint v, f;

  v = glCreateShader(GL_VERTEX_SHADER);
  f = glCreateShader(GL_FRAGMENT_SHADER);
  glShaderSource(v, 1, vertex_shader, NULL);
  glShaderSource(f, 1, fragment_shader, NULL);
  glCompileShader(v);
  glCompileShader(f);
  p = glCreateProgram();
  glAttachShader(p,f);
  glAttachShader(p,v);
  glLinkProgram(p);
  glUseProgram(p);
}

int main(int argc, char **argv)
{
  glutInit(&argc, argv);
  glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
  glutInitWindowSize(512, 512);
  glutInitWindowPosition((glutGet(GLUT_SCREEN_WIDTH)-512)/2,
                         (glutGet(GLUT_SCREEN_HEIGHT)-512)/2);
  glutCreateWindow("Use mouse to rotate");
  
  trackball(cur, 0.0, 0.0, 0.0, 0.0);

  glutDisplayFunc(display);
  glutReshapeFunc(reshape);
  glutMouseFunc(mouse);
  glutMotionFunc(motion);
  glutKeyboardFunc(processNormalKeys);

  glEnable(GL_DEPTH_TEST);
  glClearColor(1.0,1.0,1.0,1.0);
  glewInit();
  if (!glewIsSupported("GL_VERSION_2_0"))
   {
     printf("GLSL not supported\n");
     exit(EXIT_FAILURE);
   }
  setShaders();
  glutMainLoop();
  return 0;
}

Exercises #3

  1. OK, it rotates. But how come the light rotates with the teapot? I'm pretty sure that the light is not rotated while the teapot vertices are. Answer: Take a look into the normal. You need to rotate the vertex normal in the vertex_shader[] too! With a code like:
    vec4 n = RotationMatrix*vec4(gl_NormalMatrix*gl_Normal, 1);\
    normal = normalize(n.xyz); \
    
    Copper mix Gouraud shading of the Teapot
  2. Introduce zoom in/out functionality of the viewer by adding mouse wheel events to the end of mouse()
    if (button == 3 && state == GLUT_DOWN)
      { zoom *= 1.1; glutPostRedisplay(); }
    else if (button == 4 && state == GLUT_DOWN)
      { zoom /= 1.1; glutPostRedisplay(); }
    
    and introduction of global variable float zoom = 1.0; that is communicated to GPU by additional uniform float Zoom; in the vertex_shader[]. Last line is replaced by
      gl_Position = gl_ProjectionMatrix * RotationMatrix \
       * gl_ModelViewMatrix*vec4(Zoom*gl_Vertex.xyz, 1.0); \
    
    In the display() we send zoom to GPU before drawing the glutSolidTeapot() by adding
     location = glGetUniformLocation(p, "Zoom");
     if (location >= 0)  glUniform1f(location, zoom);
    
  3. Simplify the cartoon shader to Gouraud shader by using just greyscale gl_FragColor = vec4(intensity); or copper mix
     vec4 copper_ambient = vec4(0.191250, 0.073500, 0.022500, 1.000000); \
     vec4 copper_diffuse = vec4(0.703800, 0.270480, 0.082800, 1.000000); \
     gl_FragColor = copper_ambient + intensity*copper_diffuse;\
    

Reading Objects

Complete motorBike mesh in VisIt Sometimes we hit limitations of the visualisation tools for the data that we want to visualize. For example motorBike.obj from OpenFOAM contains object groups that we want to show colored separately and not as whole. Neither VisIt and ParaView can read Wavefront OBJ file with group separation. We are forced to convert motorBike.obj into bunch of files and read them one by one. The following wavefront.c converts motorBike.obj into 67 files. Try to open them in VisIt and ParaView?.

#include <stdio.h>
#include <GL/glew.h>
#include <GL/glut.h>

#define MaxVertices 400000
#define MaxFaces    400000 
#define MaxGroups   100

GLfloat vertex[MaxVertices*3];
GLuint  face[MaxFaces*3];
char    group_name[MaxGroups][80];
int     start_face[MaxGroups];

int vertices = 0;
int faces    = 0;
int groups   = 0;

void read_wavefront(const char *filename)
{
  char line[80];
  FILE *f = fopen(filename, "r");
  while(fgets(line, sizeof(line), f))
    switch(line[0])
      {
      case 'v':
        sscanf(&line[1],  "%f %f %f", &vertex[vertices+3],
               &vertex[vertices*3+1], &vertex[vertices*3+2]);
        ++vertices;
        break;
      case 'g':
        sscanf(&line[1], "%s", group_name[groups]);
        start_face[groups++] = faces;
        break;
      case 'f':
        sscanf(&line[1],  "%d %d %d", &face[faces*3],
               &face[faces*3+1], &face[faces*3+2]);
        --face[faces*3]; --face[faces*3+1];
        --face[faces*3+2]; ++faces; 
        break;
      }
  fclose(f);
  start_face[groups] = faces;
  printf("Read %d vertices and %d faces within %d groups from %s\n",
         vertices, faces, groups, filename);
}

void write_wavefront(int group_number)
{
  int i = 0; char n[80], *p = group_name[group_number];
  while (*p != '%' && *p != '\0') n[i++] = *p++; // remove % from name
  n[i++] = '.'; n[i++] = 'o'; n[i++] = 'b'; n[i++] = 'j'; n[i] = '\0';
  FILE *f = fopen(n, "w"); fprintf(f, "# Wavefront OBJ file\n");
  for (i = 0; i < vertices; i++)
    fprintf(f, "v %g %g %g\n", vertex[i*3], vertex[i*3+1], vertex[i*3+2]);
  fprintf(f, "g %s\n", group_name[group_number]);
  for (i = start_face[group_number]; i < start_face[group_number+1]; ++i)
    fprintf(f, "f %d %d %d\n", face[i*3]+1, face[i*3+1]+1, face[i*3+2]+1);
  fclose(f);
}

int main(int argc, char **argv)
{
  int i;
  read_wavefront("motorBike.obj");
  for(i = 0; i < groups; i++) write_wavefront(i);
  return 0;
}

Point cloud from single vertex array

Exercises #3

  1. Insert teapot.c interactivity example into wavefront.c above and save it as motorbike.c. Verify that there are no compile problems and that the main() contains read_wavefront("motorBike.obj");. Disable lengthy wavefront saving in main().
  2. Instead of drawing of the teapot in display() we will draw single vertex array object as a point cloud with
     //glutSolidTeapot(0.6);
     glDrawArrays(GL_POINTS, 0, vertices);
    
    To be able to draw this, we need to prepare Vertex Array Object and buffer with init(); that is called from main() just before glutMainLoop();
    void init()
    {
      GLuint VAO[1];
      GLuint Buffer[1];
      glGenVertexArrays(1, VAO);
      glBindVertexArray(VAO[0]);
      glGenBuffers(1, Buffer);
      glBindBuffer(GL_ARRAY_BUFFER, Buffer[0]);
      glBufferData(GL_ARRAY_BUFFER, vertices*3*sizeof(GLfloat),
                   vertex, GL_STATIC_DRAW);
      glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, NULL);
      glEnableVertexAttribArray(0);
    }
    
  3. We see that rotation of the motorbike around the front wheel is not really nice. To compensate we translate all points in the vertex_shader[] by adding vec3(-0.75, 0, -0.7); to every vertex in world coordinates and thus moving motor bike to origin. Last part of the vertex_shader[]now reads:
    vec3 position = gl_Vertex.xyz + vec3(-0.75, 0, -0.7); \
    gl_Position = gl_ProjectionMatrix * RotationMatrix \
     * gl_ModelViewMatrix*vec4(Zoom*position, 1.0); \
    

Attachments (24)